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Phase Diagram of a One-Dimensional Model 
with Noneonvex Interactions, 
Using the Method of Effective Potentials 
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The ground states of a one-dimensional system of the Frenkel-Kontorova type, 
but involving piecewise parabolic potentials, including a nonconvex interatomic 
interaction, have been studied numerically using the method of effective poten- 
tials. Part of the phase diagram is identical to one studied earlier for a convex 
interaction, and part of it exhibits some new phases, first-order phase 
transitions, multicritical points, and an accumulation point of multicritical 
points, all associated with the nonconvex interaction. 

KEY WORDS: Convex (nonconvex) region; multicritical point; accu- 
mulation point. 

In recent years there have been a number  of studies (1) of the ground states 
of one-dimensional systems of atoms with a potential energy 

H= Z [V(x.) + W(x.+l-x.)] (5) 
n 

where - ~ < x .  < ~ is the position of the nth atom. When the interactions 
V and W compete with each other it is possible to obtain a fairly complex 
set of commensurate and incommensurate phases and transitions between 
them. 

This paper presents the results of numerical calculations of the phase 
diagram for a particular case in which both V and W are piecewise 
parabolic functions and W is nonconvex. The calculations used the method 
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of effective potentials, ~2'3~ which has recently demonstrated its utility as a 

numerical technique in some other studies involving a nonconvex IV. ~4'5) 
Previous studies in the nonconvex case (6'7) have had to rely upon special 
assumptions or special properties of W. 

Assume that 

V(x)=Kf(x),  W ( x ' - x ) = f ( x ' - x - 3 ' )  (2) 

and K and y are real parameters, and 

f ( l  + x)= f (x)  (3) 

a periodic function defined by 

f (x)  = �89 a, -�88 <~ x <~ �88 
(4) 

=~-6-�89189 2, �88 

on the interval - 1 / 4  to 3/4, and by periodicity outside this interval; see 
Fig. 1. Since both V and W are periodic functions, it is sufficient, when 
considering the ground state, to assume that 

0~<x ,<  1 (5) 

and as this interval is best thought of as a circle, one can replace x,  with an 
angular variable 

0, = 2ztx, (6) 

which varies from 0 to 27t. The model described by (2) is then very similar 
to the chiral X Y  model in a field studied in Ref. 4, with the cosine 
approximated by a piecewise parabolic function. 

-i - g  -~ 

Fig. 1. The periodic piecewise parabolic function f(x); see (4). 
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When V is periodic and W is convex, a ground state of (1) has a well- 
defined "winding number" co, the average of the separation x,+ 1 -  x,  of 
successive particles. For nonconvex W there is not, in general, a unique 
winding number, but one can define an analogous quantity for a ground 
state of period Q, i.e., 

X n +  Q -~ X n 

for all n, as the ratio P/Q, where 

(7) 

Q - 1  

P =  ~ { x , + j + , - x , + j }  (8) 
j = o  

and the curly brackets mean the fractional part: an appropriate integer has 
been added to the difference so that it lies in the interval [0, 1). 

The ground states of (2) were studied using a numerical solution of the 
eigenvalue equation 

(9) V(x') + mini  W(x' - x) + R(x)] = 2 + R(x') 
x 

for the unknown eigenvalue 2 and periodic eigenvector 

R(1 + x) = R(x) 

Because of the periodicity of V, R, and W, the variables x and x' can be 
confined to the compact domain (5). In this case the continuity of V and W 
guarantees the existence of a unique eigenvalue and at least one continuous 
eigenvector R. ~8) For a numerical solution the continuous interval was 
replaced by a grid of 100 points, and (9) was solved by successive 
approximations; for details, see Ref. 3. 

The phase diagram of the model with the interactions given in (2) is 
shown in Fig. 2. The fractions denote winding numbers P/Q with the 
denominator equal to the period. Phases of types A and B have different 
symmetries: B phases always have some atoms at the maximum of V(x), 
and this is never the case for A phases. The unlabeled regions in the lower 
part of the figure contain a multitude of other phases. 

Although the function W is not convex, in a particular ground state it 
may be the case that W(z) is locally convex (positive second derivative) 
when z is one of the separations x n + l - xn of adjacent atoms. In this case, 
following the terminology of Refs. 4 and 5, the phase is said to be 
"convex," otherwise it is "nonconvex." In particular, when K is small one 
expects to find "convex" phases because the separations occur near the 
minimum of W; this can also be proved to be the case when K is suf- 
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Fig. 2. Phase diagram corresponding to (2). The dashed lines are separation lines. The 
points marked Cj and dl are multicritical points, The crossed lines are first-order transition 
lines. The numbers are values of the winding number  ~o. 

ficiently small. (9) In Fig. 2 the dashed "separation" lines divide the "convex" 
from the "nonconvex" regions. The "convex" region is to the right and 
below the separation line except for the case co = 0, where it is to the left of 
the vertical line 7 = 1/4. In all cases we have studied, the B phases lie in the 
convex regions. 

By shifting the xn by appropriate integers, the ground state of a 
"convex" phase may be transformed into a ground state of a model with 
the same V, but where W(z) is a simple parabola, (z -7)2 /2 .  For  this 
reason the lower part of the phase diagram in Fig. 2 is identical to the 
corresponding part of Fig. 21 in Ref. 3. 

Several features of the "nonconvex" part of the phase diagram deserve 
comment. There are a number of first-order transitions between phases 
with different co, a situation that cannot occur in the "convex" region. 
These include all the cases where phases are separated by horizontal lines. 
Presumably the presence of horizontal (in place of curved) lines reflects 
some peculiar degeneracy arising from the fact that both V and W are 
(piecewise) parabolic. The horizontal boundaries between co= 1/Q and 
c o = l / ( Q + l ) ,  Q = 2 , 3 , 4  ..... become curved when they intersect the 
separation line of co = 1/(Q + 1) at a point where the first derivative of the 
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Table I. The K Values of Some Bicritical 
and Tricritical Points of the 

Model Given by (2) 

Bicritical points K 

Cl (tricritical) 4 
C 2 2.27492 
C 3 1.74400 
C 4 1.51843 
C5 1.41463 
C6 1.36750 
C7 1.34709 
C~ 1.33869 

phase boundary is continuous. The phase transition remains first order on 
the curved boundary. Moving in the other direction, the discontinuity 
across each horizontal boundary becomes weaker as 7 decreases and dis- 
appears entirely at the vertical line 7 = 1/4, which is a line of continuous 
transitions to the co = 0 state. Consequently, C2, C3,... resemble bicritical 
points and C1 resembles a tricritical point. The corresponding K values are 
given in Table I; one can show that they converge exponentially to the 
accumulation point at K =  4/3. 

Along the horizontal boundary between e~=0 and co= 1/2 
(1/4~<7 ~< 1/2), the co= 1/2 ground state is of the form x, x', x, x',..., with 
x ' =  1 - x ,  and x any value within the range 

that is, the ground state is continuously (infinitely) degenerate. The same is 
true of the co--2/4 phase along the horizontal boundary with co = 1/2, 
where a period consists of x~, x2, 1 - X z ,  l - x 1 ,  and x~, and x2 can 
change continuously over a small range without changing the energy. At 
the point d~ (7 = 5/12, K---2) this boundary meets the separation line for 
co -- 1/2, and the extension of the separation line becomes a line of con- 
tinuous transitions between co = 1/2 and co = 2/4. Note the close analogy in 
this connection between dl and C1. We suspect that similar features occur 
in the other co = 1/Q nonconvex regions, but these have not been studied. 

A continuous degeneracy of the frown noted above has not been obser- 
ved in other studies in similar systems with nonconvex W, so it may well be 
peculiar to systems in which all the potentials are piecewise parabolic. This 
may also be the reason why some of the other features found in the 
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"nonconvex" region in Refs. 4 and 5, such as multiphase points and 
accumulation points of triple points, have not been observed in our study; 
however, their absence could equally well be due to the failure to look in 
the right places with a sufficiently fine grid. 

In conclusion, we have shown that the phase diagram for (1) with the 
specific interactions (2) divides into a "convex" and a "nonconvex" region. 
The latter contains certain types of first-order transitions and multicritical 
points, and at least one accumulation point of multicritical points, which 
do not occur for convex W. Some of these features have been observed in 
other studies of nonconvex W and some have not; the latter may be a 
consequence of using only piecewise parabolic potentials. 
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